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A B S T R A C T

Machine learning techniques have one of their main objectives to reduce the generalized prediction error.
Support vector models have as a main challenge the choice of an appropriate kernel function, as well as
the estimation of its hyperparameters. Such procedures are usually performed through some tests and tuning
processes which require a high computational performance. In contrast, ensemble methods present a good
approach to combine several models which result in a greater predictive capacity. In this paper, we propose a
new ensemble method to support vector regression, namely regression random machines. The proposed method
eliminates the need to choose the best kernel function during the tuning process using a random mixture of
kernel functions combined with a properly bagging ensemble which considers the strength and agreement of
the single models. The results demonstrated a good predictive performance through lower generalization error
which overlaps the single and bagged versions of support vector models with different kernels. The usefulness
of the proposed method is illustrated by simulation studies that were realized over eight artificial scenarios
and twenty-seven real-world applications.
1. Introduction

The prediction of new observations or events through statistical
models is one of the main objectives of supervised statistical learning
methods. Currently, machine learning models have several applications
in regression tasks in a wide range of science fields, for instance, econ-
omy — predicting bitcoin’s price (McNally, Roche, & Caton, 2018), bi-
ology — predicting biological properties from plants (Féret et al., 2019)
or classifying gene functions (Park, Koo, Kim, Sohn, & Lee, 2008), and
physics — predicting electrical propertiesfrom materials (Chen, Tran,
Batra, Kim, & Ramprasad, 2019). Inside this type of regression models,
there is the support vector regression (SVR) model that was proposed
by Drucker, Burges, Kaufman, Smola, and Vapnik (1997) and has been
used extensively as an optimal solution when compared with other tra-
ditional base-line methods (Delbari, Sharifazari, & Mohammadi, 2019;
Khosravi, Koury, Machado, & Pabon, 2018; Wu, Ho, & Lee, 2004;
Xiao, Zhang, Zhong, Shao, & Li, 2018). Moreover, the SVR has good
properties that differ from other models such as convex optimization
and the foundation of statistical learning theory. (Shivaswamy, Chu, &
Jansche, 2007) attribute the success of support vector models mainly to
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four factors: (i) rooted in the statistical learning theory, SVMs possess
superior generalization capacity; (ii) a globally optimal solution is ob-
tainable by solving a convex optimization problem, while the problems
of local minima impede other contemporary approaches, such as neural
networks; (iii) using the so-called kernel trick, it is convenient to solve
non-linear problems in arbitrarily high dimensional feature spaces; (iv)
only a part of training samples are involved in solution representation.

Ensemble learning is also a predictive modeling strategy that com-
bines models in order to achieve greater predictive capacity. The
combination of singular models can enhance predictive power and
increase its generalization power (Van Wezel & Potharst, 2007). Even
novel approaches, as deep learning models, can also benefit from en-
semble procedures (Araque, Corcuera-Platas, Sánchez-Rada, & Iglesias,
2017). In general, there are two main types of ensemble algorithms:
bagging (Breiman, 1996) that uses independent bootstrap samples to
create multiple models and built a final classifier by average mean or
majority vote, reducing the variance, and boosting algorithms (Freund,
Schapire, & Abe, 1999) that built sequential models directed to assign
different weights based on their errors. There are several works that
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present frameworks to improve the ensemble approaches selecting the
models which are the most accurate and diverse (Khan et al., 2019)
or adapting them to specific data scenarios, such as high dimensional
data (Brahim & Limam, 2018).

The bagging method does not require a specific type of base classi-
fier and can be used to improve predictions in regression tasks (Borra
& Di Ciaccio, 2002; Mendes-Moreira, Soares, Jorge, & Sousa, 2012;
Rakesh & Suganthan, 2017). This method can be used to enhance a
single support vector regression model and other kinds of algorithms.
The bagging approach using support vector regression models is already
reported in literature through diverse applications. For example, to
predict protein retention time (Song et al., 2002), to predict time
series (Deng, Jin, & Zhong, 2005), electric load forecasting (Li, Che,
& Yang, 2018), to forecast building occupation (Wu et al., 2018) and
to predict blood pressure measures (Lee, Ahmad, & Jeon, 2018).

Despite the different number of works that present the bagging
based on support vector regression models, there is no proposal of
standard framework to choose which kernel function will be used in
ensembles that use SVR as base-learners. In support vector models the
kernel function and its hyperparameters have a compelling impact on
the efficiency of the algorithm (Jebara, 2004). Generally, this selection
is made by a grid-search, which choose those parameters that pro-
duces the lower test error inside a grid of possible combinations, by
random search (Bergstra & Bengio, 2012), a stochastic combination of
kernel parameters or functions (Mazaheri et al., 2019), or by Bayesian
optimization algorithms (Bergstra, Bardenet, Bengio, & Kégl, 2011).
All of them are computationally expensive and can consume a high
computational time.

Moreover, there is an extensive discussion about the strength and
diversity trade-off in ensemble learning methods (Bhatnagar, Bhardwaj,
Sharma, & Haroon, 2014; Bi, 2012; Cunningham & Carney, 2000;
Kuncheva, 2003; Lam, 2000; Sluban & Lavrač, 2015). Essentially, to
achieve a better result with the combination of multiple models is
necessary to have great strength and a high diversity simultaneously
among the base learners. The strength of a model can be defined as its
predictive capacity, and the diversity is related to a degree of indepen-
dence between models, in other words, different classifiers complement
one another as sources of evidence of the correct classification of ran-
dom objects. The setting to optimize an ensemble approach regarding
these two features is still an open issue with different approaches to
handle it (Alzubi, 2015; Brown, Yao, Wyatt, Wersing, & Sendhoff, 2002;
Cavalcanti, Oliveira, Moura, & Carvalho, 2016; Chandra & Yao, 2006;
Smutz & Stavrou, 2016; Travis-Lumer & Goldberg, 2021).

In classification contexts, ensemble and hybrid methods with sup-
port vector machines using different kernels functions has been dis-
cussed in recent literature. Evgeniou, Pontil, and Elisseeff (2004) an-
alyze the combinations of the support vector machines, as a special
case of kernel machines model, and present theoretical estimates of
their leave-one-out error. Wang, Zheng, Yoon, and Ko (2018) propose
a SVM ensemble with bagging that each base learner uses a 2-d
polynomial kernel function. (Wang et al., 2018) proposed a hybrid
algorithm using twelve SVM base learners. Mazaheri et al. (2019)
propose an algorithm relies on a voting procedure among stochastically
generated kernel classifiers. Ara, Maia, Louzada, and Macêdo (2021a)
propose the Random Machines method, a novel framework to deal with
the kernel function selection in classification tasks.

This paper introduces a novel machine learning method that
presents a solution for the choice of kernel function to be used in
the bagged supported vector regression, using an alternative to the
open problem of kernel and hyperparameters’ selections. This novel
method, namely Regression Random Machines (RRM), gives a solution
for the kernel function’s choice and tuning processes with efficient
computational time and robust predictive power, and that improves
the diversity of the combination without worsening its prediction
performance. The method received this name because it uses weighted
2

random kernel choice for each model that composes the aggregation of
Table 1
Kernel functions.

Kernel K(x,y) Parameters

Linear Kernel 𝛾(𝑥 ⋅ 𝑦) 𝛾
Polynomial Kernel (𝛾(𝑥 ⋅ 𝑦))𝑑 𝛾, 𝑑
Gaussian Kernel 𝑒−𝛾||𝑥−𝑦||2 𝛾
Laplacian Kernel 𝑒−𝛾||𝑥−𝑦|| 𝛾

support vector regression learners, increasing the predictive power of
the final model. In general, the contributions of this paper are four-fold.
(1) Propose RRM as a strong predictive model in regression machine
learning method. (2) Eliminate the kernel turning process in support
vector machine models. (3) Clarify the trade-off between strength and
diversity to improve the predictive performance in ensemble models.
(4) Traditional support vector regression and bagged support vector
regression are particular cases of the random machines.

The results were validated over simulation studies and diverse
benchmarking datasets. The proposed approach is different from the
traditional ensemble of support vector regression (SVR) models because
the randomness used increases the diversity of base learners without
reducing its predictive power. The idea of increasing the diversity and
maintaining the accuracy in bagging was also demonstrated in works
that use kNN classifiers as base models (Gul et al., 2018).

The rest of the paper is organized as follows: Section 2 presents
a theoretical description review about the support vector machine
method, proposed by Drucker et al. (1997), the challenges on the
selection of hyperparameters and standard kernel functions and the
traditional ensemble approaches. Section 3 introduces the proposed
regression random machines (RRM) approach and how and why it
works in detail of strength and diversity. Section 4 displays the results
and applications on artificial and real datasets. Finally, Section 5 closes
the paper with final remarks.

2. Support vector regression

Support Vector Machine (SVM) models were firstly introduced
by Boser, Guyon, and Vapnik (1992) and Cortes and Vapnik (1995) in
a context of classification tasks and became strongly relevant in the
statistical learning field since they can achieve lower generalization
error and have strong theoretical properties. Therefore, it theoretically
guaranteed that it achieves the global minimum, while other algorithms
as Neural Networks (ANN) can be trapped in local minima. Supposing
a context in which the target variable 𝑦 is continuous, support vector
regression machines (SVR) (Drucker et al., 1997) have been proposed
as a generalized version of support vector machines to regression tasks.
Support vector models, classification and regression tasks, use the
kernel trick to handle non-linear scenarios.

The functions 𝐾(𝐱, 𝐲) = 𝜙(𝐱) ⋅ 𝜙(𝐲) are defined as the semi-definite
kernel functions (Courant & Hilbert, 1953) and various types of kernel
functions can be used in distinct regression examples. The choice of
particular kernel functions provides unique nonlinear mappings and
the performance of the resulting SVR often depends on the appropriate
choice of the kernel (Jebara, 2004). There are several kernel functions
in the general framework for SVR, which some of the most common
were used in this paper. They are presented in Table 1, and have
hyperparameters 𝛾 and 𝑑, which 𝛾 > 0 and 𝑑 ∈ N.

Determining which the best kernel by grid search, or other search
methods, can be an expensive and harrowing computational prob-
lem (Chapelle & Vapnik, 2000). In order to solve it, many works have
tried to develop a methodology that can improve the selection of the
best kernel function (Ayat, Cheriet, & Suen, 2005; Cherkassky & Ma,
2004; Friedrichs & Igel, 2005; Jebara, 2004; Wu, Tzeng, & Lin, 2009).
Regression random machines method proposes an efficient alternative
to work through a framework where it is avoidable for this exhaustive
search, saving computational power and time, since this selection is

made through a random process.
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2.1. Bagging support vector regression

Bagging, an acronym of Bootstrapping Aggregation, is a popular en-
semble procedure proposed by Breiman (1996). In general, the bagging
generates data sets by random sampling with replacement from the
training set with the same size 𝑛, also known as bootstrap samples.
Then, each model ℎ𝑗 (𝑥𝑖) is trained independently for each bootstrap-
ping sample 𝑗, ∀𝑗 ∈ {1,… , 𝐵}, where ℎ𝑖(𝐱) is the model generated to
each bootstrap sample from 𝑖 = 1,… , 𝐵, and 𝐵 is the number of total
bootstrap samples.

Considering the bagging procedure, any model can be used as a
base learner and it can improve the predictive power of non-parametric
regression methods (Borra & Di Ciaccio, 2002). One possibility is
to use the SVR as the base model to lower the generalization er-
ror. The use of the bagged SVR for regression tasks can be listed:
content-based image retrieval (Yildizer, Balci, Hassan, & Alhajj, 2012),
solar power forecasting (Abuella & Chowdhury, 2017), quantifying
urban land cover (Okujeni, van der Linden, Suess, & Hostert, 2016),
wind power prediction (Heinermann & Kramer, 2014) and a trimmed
bagging approach (Croux, Joossens, & Lemmens, 2007).

Although some works applied bagged SVR, none of them present a
general framework to deal with the choice of the best kernel function.
Often, this choice is made by trial evaluation, by grid search, or by ran-
dom search. As this proceeding is computationally expensive (Chapelle
& Vapnik, 2000). Moreover, the lack of diversity between support vec-
tor models implies a weak improvement from the traditional bagging
procedure performance (Kim, Pang, Je, Kim, & Bang, 2002).

3. Regression random machines

The Random Machines (RM) methodology is not a traditional en-
semble learning, this method can be interpreted as a mixing of bagging
and boosting focused on support vector models (Ara et al., 2021a).
This section describes the method in detail.

Given a training set {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 with 𝐱𝑖 ∈ R𝑝 and 𝑦𝑖 ∈ R, ∀𝑖 =
1,… , 𝑛; the kernel bagging method initialize by training single models
ℎ𝑟(𝐱), where 𝑟 = 1,… , 𝑅, and 𝑅 is the total number of different kernel
functions that could be used in support vector regression models. For
example, if 𝑅 = 4 a possible choice is to define ℎ1 as SVR with Linear
kernel, ℎ2 as SVR with Polynomial kernel, ℎ3 as SVR with Gaussian kernel
and ℎ4 as SVR with Laplacian kernel.

Each model is validated for the test set {(𝒙𝑘, 𝑦𝑘)}𝑇𝑘=1, and the root
mean squared error (𝑅𝑀𝑆𝐸𝑟), which we will refer as 𝛿𝑟, is calculated
for each model, ∀𝑟 = 1,… , 𝑅, where 𝑅 is the number of kernel
functions that will be used. As the range of the dependent variable in
regression (𝑦) is broad, the vector of root means squares 𝜹 is divided
by its deviation in order to standardize the error. Afterwards, sample
probabilities, 𝜆𝑟, are calculated by Eq. (1) for each kernel function

𝜆𝑟 =
𝑒−𝛽𝛿𝑟

∑𝑅
𝑖=1 𝑒

−𝛽𝛿𝑖
, (1)

with ∀𝑟 = 1,… , 𝑅.
Subsequently, 𝐵 bootstrap samples are sampled from the training

set. A support vector regression model 𝑔𝑘 is trained for each bootstrap
sample, 𝑘 = 𝑖,… , 𝐵 and the kernel function that will be used for 𝑔𝑘 will
be determined by a random choice with probability 𝜆𝑟,∀𝑟 = 1,… , 𝑅.
The probabilities 𝜆𝑟 are higher if the determined kernel function used
in ℎ𝑟(𝐱) has a lower generalization error measured from the calculated
RMSE over the test set. Consequently, the models with lower 𝛿𝑟 will
frequently appear when the random kernel selection for each bootstrap
model is done.

The parameter 𝛽, named as the correlation parameter, will tune
the penalty of the generalization error of each model. Fig. 1 shows
that small values of 𝛽 create heavy-tail penalty functions while greater
beta’s values represent light-tail penalty. The parameter gets its name
because it can determine the diversity between the chosen kernel
3

Fig. 1. The correlation coefficient and its relation with the calculation of the
probabilities 𝝀. As 𝛽 increases the penalty given by 𝛿 values decrease.

functions since high values further penalize the performance differences
between each SVR model type. For instance, considering a value of
𝛽 = 0, the result of the vector of probabilities is given by Eq. (1) its
𝝀 = {0.25, 0.25, 0.25, 0.25}, which means that all kernels have the same
chance to be sampled in each bootstrap model, i.e: maximum diver-
sity between kernel functions. Differently, a large value for 𝛽 would
quickly scale difference between models, consequently, the vector of
probabilities 𝝀 would accumulate in a single kernel, and just one would
be sampled, i.e: minimum diversity since it is the same kernel function
for all bootstrap samples returning to the traditional bagging approach.

After this, a weight 𝑤𝑖 is assigned to each bootstrap model calcu-
lated for 𝑔𝑖 ∀𝑖 = 1,… , 𝐵. The weight is given by Eq. (2).

𝑤𝑖 =
𝑒−𝛽𝛬𝑖

∑𝐵
𝑗=1 𝑒

−𝛽𝛬𝑗
, 𝑖 = 1,… , 𝐵, (2)

where 𝛬𝑖 is the Root Mean Square Error of model’s prediction 𝑔𝑖 using
the Out of Bag Samples (𝑂𝑂𝐵𝐺𝑖), obtained from 𝑖 bootstrap sample
∀𝑖 = 1,… , 𝐵, as test set. All this modeling process is summarized in the
pseudo-code exposed in Algorithm 1.

𝐺(𝐱𝑖) =
𝐵
∑

𝑗
𝑤𝑗𝑔𝑗 (𝐱𝑖), 𝑖 = 1,… , 𝑁.

Algorithm 1 R/andom Machines
Input: Training Data, Test Data, B, Kernel Functions 𝐤 =
{

𝑘𝐿𝐼𝑁 , 𝑘𝑃𝑂𝐿, 𝑘𝑅𝐵𝐹 , 𝑘𝐿𝐴𝑃
}

for each Kernel Function 𝑟 do
Calculate the single 𝑆𝑉 𝑅𝑟, ∀𝑟 = 1,… , 4, where 𝑟 corresponds to each

kernel function
Calculate the probabilities 𝜆𝑟 that it will define the chance of one sample
of being randomly selected
Generate B bootstrap samples
for b in B do

Model the bootstrap model 𝑔𝑏(𝐱𝐢) by sampling a kernel function with
probability 𝜆𝑟

Assign a weight 𝑤𝑏 using 𝑂𝑂𝐵𝐺𝑏 samples.
Calculate 𝐺(𝐱)

The entire regression random machines are schematically presented in
Fig. 2, where it is designed for all the steps used in all cases presented
in this article. It is important to point out that the traditional support
vector regression bagging can be interpreted as a particular case of
the RRM when the probability of selecting one kernel function is
equal to one, and every bootstrap model has the same weight. In
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Fig. 2. Workflow followed by the regression random machines.
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the same manner, the traditional support vector regression can also be
interpreted as a particular case of regression random machines, when
a single is selected and 𝐵 = 0.

All the procedures of this paper were performed on a personal lap-
op with the following configurations: Linux, 64-bit Operating System,
ntel Core processor i5-3210M 2.50 GHz and 16 GB of RAM. More-
ver, R Software version 3.6.3 with packages keras (Chollet, Allaire,

et al., 2017) and kernlab (Karatzoglou, Smola, Hornik, & Zeileis, 2004).
he Regression Random Machines (RM) was also implemented in R

anguage and it can be used through the rmachines package, under
continuous development and available at GitHub (https://github.com/
MateusMaiaDS/rmachines).

In general, regression random machines, exposed in this section and
summarized in Algorithm 1 and Fig. 2, considers a random mixture of
possible kernel functions combined with a properly bagging ensemble
which considers the strength and agreement of the single models. At
each step of the bagging procedure a random choice of the kernel
function is realized, based on a strength of the single models, which
decreases the paired agreement of the combined models and improves
the general strength of the final model. These concepts are detailed in
4

the next two sections.
3.1. Regression random machines and the bootstrap aggregating

Let 𝜏 = {(𝒙𝑖, 𝑦𝑖)}𝑁𝑖=1 the training set independent and identically
distributed over 𝑃 = 𝑃 (𝐗, 𝑌 ) and a procedure which uses this learning
et to form a predictor 𝜑(𝐱, 𝜏). Let (𝐱, 𝑦) a single observation in 𝜏,
𝜙 (𝐱, 𝑘) the predictor and 𝑘 a single and fixed kernel function. The model
aggregation 𝜙𝐴(.) is given by Breiman (1996),

𝐴 (𝐱, 𝑘) = 𝐸𝜏 [𝜙 (𝐱, 𝜏, 𝑘)]

Then,

𝐸𝜏
{

[𝑦 − 𝜙 (𝐱, 𝜏, 𝑘)]2
}

= 𝑦2 − 2𝑦𝐸𝜏 [𝜙 (𝐱, 𝜏, 𝑘)] + 𝐸𝜏
[

𝜙2 (𝐱, 𝜏, 𝑘)
]

= 𝑦2 − 2𝑦𝜙𝐴 (𝐱, 𝜏, 𝑘) + 𝐸𝜏
[

𝜙2 (𝐱, 𝜏, 𝑘)
]

≥ 𝑦2 − 2𝑦𝜙𝐴 (𝐱, 𝜏, 𝑘) + 𝜙2
𝐴 (𝐱, 𝜏, 𝑘)

(

𝐸𝑍2 ≥ [𝐸𝑍]2
)

=
[

𝑦 − 𝜙𝐴 (𝐱, 𝜏, 𝑘)
]2 .

hus,

𝜏
{

[𝑦 − 𝜙 (𝐱, 𝜏, 𝑘)]2
}

≥
[

𝑦 − 𝜙𝐴 (𝐱, 𝜏, 𝑘)
]2 .

Using a both side integration in this inequality at the joint probabil-
ty distribution 𝑃 , implies the mean square error of 𝜙𝐴(.) is lower than
(.). In general, an aggregated predictor is more suitable than a single
redictor. This situation depends on

}2 [ 2 ]
𝐸𝜏 [𝜑 (𝐱, 𝜏, 𝑘)] ≤ 𝐸𝜏 𝜑 (𝐱, 𝜏, 𝑘) .

https://github.com/MateusMaiaDS/rmachines
https://github.com/MateusMaiaDS/rmachines
https://github.com/MateusMaiaDS/rmachines
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The instability of 𝜑(.) is proved to be important around the aggre-
ated model. If 𝜑 (𝐱, 𝜏, 𝑘) does not change too much in 𝜏 the two sides

will be nearly equal, and aggregation will not help. This is the reason
that 𝜑(.) with lower instability does not benefit from the aggregation.
In general, support vector models are low-biased methods (Valentini &
Dietterich, 2004) based on the structural risk minimization principle
(SRM) (Vapnik & Chervonenkis, 1974) which balances the model’s
complexity to prevent the overfitting problem. This concept used in
SVM is closely related to the theory of regularization over the trade-off
bias and variance (Devi, Kumar, Shankar, et al., 2019). In this sense,
many authors have been discouraged from using SVM as a single base
learner aggregation (Huang, Chen, Lin, Ke, & Tsai, 2017; Kim et al.,
2002; Stork, Ramos, Koch, & Konen, 2015; Ye & Suganthan, 2012).

A way to overcome this situation is to consider 𝜅 as a random
variable instead of considering 𝑘 as a user-defined or a tuned selection.
Let 𝑘 a case in a predefined and finite kernel set 𝜅 with 𝐾 possible
kernels. The instability now depends on
{

𝐸𝜅𝜏 [𝜑 (𝐱, 𝜏, 𝜅)]
}2 ≤ 𝐸𝜅𝜏

[

𝜑2 (𝐱, 𝜏, 𝜅)
]

.

At the same time, the kernel model aggregation is given 𝜙𝐾𝐴 (𝐱) =
𝐸𝜅𝜏 [𝜙 (𝐱, 𝜏, 𝜅)]. So,

𝐸𝜅𝜏 [𝜙 (𝐱, 𝜏, 𝜅)] = 𝐸𝜅
{

𝐸𝜏 [(𝐱, 𝜏, 𝜅) |𝜅]
}

=
∑

𝑘 𝐸𝜏 [(𝐱, 𝜏, 𝜅) |𝜅 = 𝑘]𝑃 (𝜅 = 𝑘)
=
∑

𝑘 𝜙𝐴 (𝐱, 𝜏, 𝑘) 𝜃 (𝑘) ,
(3)

with 0 < 𝜃 (𝑘) < 1 the selection probability of the kernel function 𝑘,
and ∑

𝑘 𝜃 (𝑘) = 1. The Eq. (3) implies that 𝜙𝐾𝐴 (𝐱, 𝜏) is the aggregation
kernel model. Notice that 𝜙𝐾𝐴 (𝐱, 𝜏) depends not only on 𝐱 but also
the underlying probability distribution 𝑃 (𝐗, 𝑌 ) from which 𝜏 is drawn
which is unknown. Thus, 𝜙𝐾𝐴 = 𝜙𝐾𝐴 (𝐱, 𝑃 ) and the bagged estimate is
not 𝜑𝐾𝐴 (𝐱, 𝑃 ), but rather

𝜑𝐾𝐵 (𝐱) = 𝜑𝐾𝐴
(

𝐱, 𝑃𝜏
)

where 𝑃𝜏 is the distribution that concentrates mass 1∕𝑛 at each observa-
tion

(

𝐱𝐢, 𝑦𝑖
)

∈ 𝜏 and 𝑃𝜏 is called the bootstrap approximation of 𝑃 (Efron
& Tibshirani, 1986).

The choice of different kernel functions in a finite kernel space 𝜅
guaranteed suitable for the kernel bagging estimate 𝜑𝐾𝐵 (𝐱). However,
very similar kernel functions imply a bagging procedure with no rel-
evant improvements. Otherwise, since the kernel functions consider
feature map functions transformations to higher features spaces, it
implies that high dimensional 𝐱 generates improvements to the random
machines. In fact, the probabilities 𝜃 (𝑘) may be estimated in different
manners, however, in this paper, we consider the procedure given
by Eq. (1).

3.2. Regression random machines out-of-box

There are theoretical reasons why the regression random machines
are an ensemble approach that can reduce the generalization error.
The random selection of kernel functions works to diversify different
functions that belong to a Reproducing Kernel Hilbert Space (RHKS).
The goal of this procedure is to diminish the correlation between
regression models that constitute the RRM and increase the strength
of them since both components result in greater results to bagged
classifiers (Breiman, 2001). Obtain these both features is extremely im-
portant in the bagging approach, and works that used these strategies,
even on different base learners (i.e: tree models Breiman, 2001, or kNN
classifiers Gul et al., 2018) achieved greater results them the traditional
bagged algorithms.

The correlation concept can be defined as a measure of how much
models are similar, while the strength of a model relies on how well it
correctly predicts an observation. The estimation of a correlation mea-
sure can have different approaches. Considering classification models,
5

for instance, a method to estimate the correlation between models is i
to calculate the area from decision boundaries that overlaps among
them (Turney, 1995). Other estimation methods, still considering clas-
sification context, are used by Ho (1998), who defines the similarity,
through the agreement measure, as the number of observations that are
equally labeled with the same class by different models.

In the regression approach, the correlation/similarity estimation
between models can be calculated as the mean of the upper triangle
from the correlation matrix given in Eq. (4). This correlation measure
also can be called as agreement value.

𝛴𝑐𝑜𝑟𝑟 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜌𝑦̂1 ,𝑦̂1 𝜌𝑦̂1 ,𝑦̂2 … 𝜌𝑦̂1 ,𝑦̂𝐵−1 𝜌𝑦̂1 ,𝑦̂𝐵
𝜌𝑦̂2 ,𝑦̂2 … 𝜌𝑦̂2 ,𝑦̂𝐵−1 𝜌𝑦̂2 ,𝑦̂𝐵

⋱ ⋮ ⋮
𝜌𝑦̂𝐵−1 ,𝑦̂𝐵−1 𝜌𝑦̂𝐵−1 ,𝑦̂𝐵

𝜌𝑦̂𝐵 ,𝑦̂𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎠𝐵×𝐵

(4)

The values of 𝜌𝑦̂𝑖 ,𝑦̂𝑗 are calculated by

𝜌𝑖,𝑗 =
∑𝑇

𝑘=1(𝑦̂𝑖𝑘 − 𝑦𝑖)(𝑦̂𝑗𝑘 − 𝑦𝑗 )
√

∑𝑇
𝑘=1(𝑦̂𝑖𝑘 − 𝑦𝑖)

√

∑𝑇
𝑘=1(𝑦̂𝑗𝑘 − 𝑦𝑗 )

. (5)

for all 𝑖 ≠ 𝑗 = 1,… , 𝐵, and 𝑦𝑖 it is the vector of predictions from
observations that belong to the test set. The strength in this article
will be estimated using the Error Score since it captures the prediction
performance and has the same range of the correlation measure. This
index formulation is given by

𝐸𝑆𝑖 =
𝜀𝑖 − 𝜀𝑚𝑖𝑛

𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛
, (6)

where the 𝜺 is just the RMSE vector over test observations for all
methods, and where 𝜀𝑖 is the individual value for that technique ∀𝑖 =
1,… , 𝑅. For instance, suppose three algorithms: regression random ma-
chines, support vector linear regression (SVR.Lin) and bagging support
vector linear regression (BSVR.Lin), then, after calculating the RMSE
for each of them over a test set, the vector 𝜺 = {0.1, 0.5, 0.3} is obtained,

ith the coordinates for each kernel function respectively. Thus, the
𝑺 vector is given by 𝑬𝑺 = {0, 1, 0.5} which means that 𝐸𝑆1 = 0
as the Error Score for RRM, 𝐸𝑆2 = 1 for SVR.Lin and 𝐸𝑆2 = 0.5 for
SVR.Lin. As the ES is directly proportional to the Root Mean Square
rror, it also can be considered a strength measure. Smaller values of
MSE produced by a regression model imply a stronger model.

To evaluate the correlation and strength of the RRM in comparison
ith the traditional bagged version of SVR, the algorithm was applied

o overall models of simulated data detailed at Section 4. We look for
he model which has the lowest RMSE and Error Score (i.e: greater
trength) and the lowest correlation measure. A model with a small
greement can benefit more from the bagging procedure (Breiman,
001). However, just small values of correlation are not enough, since
his lower value can represent a weak model, i.e, a model which is not
apable of predicting new observations well. The result is summarized
n Table 2. Both RMSE and Agreement were calculated using a 30
epeated Holdout validation set with a split ratio of 70%–30% training-

est. The parameters of the methods were: B=100, 𝛾 = 1, C=1, 𝛽 = 2
nd 𝜖 = 0.1.

The strength of the models is affected by the agreement and vice-
ersa, so optimizing both measures at the same time is a difficult effort.
he relation between them can be analyzed in Table 2. Observing
imultaneously the RMSE and the Agreement measure from traditional
agging approaches exists a trade-off between them. Considering Ta-
le 2, if the RMSE is the lowest among them, its agreement is the
ighest. This trade-off is minimized in the RRM case, which, despite
resenting the lower RMSE in most of the cases, is not reflected in the
ighest agreement measure among all methods. Therefore, regression
andom machines have a low correlation and great strength, desirable
eatures to produce a good bagging approach.

The idea of how the random selection of kernel functions can
ncrease the diversity of regression random machines model when
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Table 2
Summary of Strength (RMSE) and Agreement over simulated data.
Model 𝑛 BSVR.Lin BSVR.Pol BSVR.Gau BSVR.Lap RRM

RMSE AGR RMSE AGR RMSE AGR RMSE AGR RMSE AGR

1

30 0.1189 0.6427 0.0812 0.2417 0.0773 0.6146 0.0777 0.7342 0.0725 0.5236
100 0.0538 0.9531 0.0216 0.3337 0.0196 0.7873 0.0246 0.9163 0.0147 0.8806
1000 0.0117 0.9953 0.0049 0.5841 0.0028 0.9187 0.0038 0.9797 0.0030 0.8822

2

30 0.2972 0.5300 0.2388 0.4839 0.2209 0.8472 0.2229 0.8329 0.1913 0.7263
100 0.1356 0.2617 0.1086 0.9340 0.1361 0.9620 0.1394 0.9648 0.1287 0.9303
1000 0.0272 0.1630 0.0214 0.9926 0.0292 0.9954 0.0284 0.9916 0.0213 0.9276

3

30 0.1788 0.5754 0.5976 0.4217 0.2672 0.5810 0.2644 0.7254 0.1983 0.4719
100 0.0641 0.8014 0.1715 0.1746 0.1260 0.6121 0.1183 0.8669 0.0749 0.6634
1000 0.0279 0.9821 0.0443 0.5348 0.0253 0.8171 0.0245 0.9642 0.0252 0.8622

4

30 0.5890 0.7763 1.4439 0.2917 0.6318 0.7119 0.6273 0.7904 0.4998 0.6229
100 0.1671 0.9142 0.4010 0.5741 0.3106 0.8236 0.2577 0.9065 0.2199 0.7995
1000 0.0608 0.9927 0.1172 0.8581 0.0551 0.9700 0.0408 0.9833 0.0515 0.9223

5

30 0.2044 0.5607 0.2242 0.2609 0.1664 0.5638 0.1647 0.7267 0.1630 0.4967
100 0.0811 0.8381 0.1487 0.3304 0.0956 0.7468 0.0958 0.8854 0.0743 0.7168
1000 0.0215 0.9854 0.0333 0.8492 0.0267 0.9249 0.0242 0.9788 0.0225 0.9141

6

30 0.1813 0.6427 0.3004 0.2417 0.1397 0.6146 0.1411 0.7342 0.1373 0.5236
100 0.0641 0.9531 0.1553 0.3337 0.1219 0.7873 0.1181 0.9163 0.0655 0.8806
1000 0.0206 0.9953 0.0429 0.5841 0.0289 0.9187 0.0239 0.9797 0.0226 0.8822

7

30 0.1813 0.8227 0.3004 0.2767 0.1397 0.6822 0.1411 0.7825 0.1373 0.6855
100 0.0641 0.9774 0.1553 0.4250 0.1219 0.8694 0.1181 0.9516 0.0655 0.8941
1000 0.0206 0.9974 0.0429 0.6676 0.0289 0.9539 0.0239 0.9852 0.0226 0.9113

8

30 0.3852 0.3062 0.5018 0.3884 0.4003 0.5006 0.4072 0.6054 0.4057 0.3633
100 0.3463 0.3791 0.3931 0.3763 0.3732 0.6027 0.3760 0.6778 0.3612 0.4037
1000 0.1405 0.4648 0.1593 0.9603 0.1609 0.7719 0.1511 0.9143 0.1496 0.8568

Total − 3.4430 17.5107 5.7094 12.1191 3.7061 18.5776 3.6149 20.7939 3.1283 17.7414
d
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t
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compared with the traditional SVR bagging algorithm, cannot be so
clear at the first moment. In order to observe clearly how it works,
we examine Model 1 in Section 4.1, with 𝑛 = 1000, as a study case
to see graphically the modeling process. Fig. 3 shows the level curves
from the true data generation surface, the predicted hyperplane for
RRM, and each single bootstrap model of a single kernel function. It
is notable that for each different kernel function the regression surface
is distinct, leading to diversity and subsequent reduction of correlation
between models. Moreover, it is possible to notice that the regression
random machines surface, built through the combination of these single
models, is the one that is closer to the real data generation hyperplane,
reinforcing that it works as the best model in that case.

The same behavior was observed on the 26 real data sets, presented
in Section 4, where the agreement is also calculated and compared
with the strength (Error Score) of each model (Fig. 4). Although the
low values of generalization error from BSVR.Lin and BSVR.Lap they
present large agreement values. In opposition, despite the low values
of agreement from BSVR.Pol and BSVR.Gau they produce great values
of Error Score. The unique method that can perform the optimal values
for both is the regression random machines.

3.3. The correlation coefficient 𝛽

Another way to study the correlation-strength trade-off in the RRM
procedure is through the coefficient 𝛽 presented in the Eqs. (1)–(2). As
mentioned before, the 𝛽 coefficient can calibrate the diversity of kernel
functions used during the bagging procedure. If we consider 𝛽 = 0 the
RRM will hold that all kernel functions will be sampled and weighed
equally. On the other hand, if we use greater values of 𝛽 the RRM’s
behavior will be close to traditional SVR bagging, since just a single
kernel function will be chosen.

In order to demonstrate this performance, we evaluate the standard-
ized RMSE and Agreement on three benchmarks datasets which will
be used again in Section 4. We considered the values of 𝛽 in a grid
that range from 0 to 5, with the length of 21 intervals. Both measures
were calculated in a holdout validation with split ratio of 70%–30%,
and setting the parameters 𝐵 = 100, 𝛾 = 1 and 𝑑 = 2. The results are
6

c

summarized in three Data Sets: Taiwan, Boston Housing and Friedman
#1 presented in Fig. 5.

Through different values of RMSE and Agreement, all of them
present the same behavior: for small values of 𝛽, i.e: minimum cor-
relation between models, we have a weaker (represented through the
large RMSE values) model from the RRM algorithm. As the beta value
increases the weighting on the kernel functions and bootstrap mod-
els predictions are applied increasing the agreement and reducing
the RMSE. However, at some inflection point, the RMSE starts to
increase and the agreement continues to grow. The reason for this
result can be explained by Breiman (1996), where it is defined that
stable base-models, as SVR models, in this case, will not benefit from
the aggregation procedure, and may even depreciate the model. Large
values of 𝛽 start to penalize the RRM in a way that just one, or few
ifferent, kernel functions will be chosen, and as SVR (Breiman et al.,
996) is defined as a stable model (i.e: bootstrap replications produces
mall changes in the model) this may lead to worst results. Therefore,
he key to the improvement from regression random machines is to
dd the instability in SVR, necessary for bagging procedures (Breiman,
996), through the random sample of kernel functions and the weights
ssociated with the predictions.

The 𝛽 also can be defined as a hyperparameter of the model and can
e tuned in order to achieve the lowest generalization error. From some
mpirical results, in this article, the default choice of 𝛽 was 2, since in
ost cases the best choice has been around this value and there was not
uch improvement from the grid search procedure for this parameter.

. Applications on artificial and real data

The proposed method was evaluated on simulated and real data
cenarios; The most diverse behaviors were used to exploit a wide range
f variety.

.1. Artificial data application

Different scenarios were used to study the regression random ma-

hines on simulated data. The objective was to evaluate the
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Fig. 3. Level Curves for different single Kernel Function models used in the regression random machines. It is important to analyze the diversity between the different kernel
functions, and how the RRM surface is the closest to the True Function.
Fig. 4. Boxplots of the mean Error Score and Mean Agreement for each method.
performance and behavior of the model when we have a controlled
experiment. Eight different data sets generation scenarios were tested.
The Models 1-5 are toy examples and can be found in Scornet (2016),
the Model 6 in Van der Laan, Polley, and Hubbard (2007), the Model
7 in Meier, Van de Geer, Bühlmann, et al. (2009) and the Model 8 is
presented in Roy and Larocque (2012). The simulations from 1-7 has
the vector of independent predictions 𝑿 = (𝑋1,… , 𝑋𝑝) and 𝑿 follow a
uniform distribution [0, 1]𝑝. In the Model 8 each predictor 𝑋 follow
7

𝑖

a standard normal distribution. Also, we define the transformation
𝑋̃𝑖 = 2(𝑋 − 0.5), 𝑖 = 1,… , 𝑝. For each case the sample size changed
among the values of 𝑛 = {30, 100, 1000}. All the scenarios are described
below:

• Model 1: p=2, 𝑌 = 𝑋2
1 + 𝑒−𝑋

2
2 + (0, 0.25)

• Model 2: p=8, 𝑌 = 𝑋̃1𝑋̃2 +𝑋2
3 − 𝑋̃4𝑋̃7 + 𝑋̃5𝑋̃8 −𝑋2

6 + (0, 0.5)
• Model 3: p=4, 𝑌 = −𝑠𝑖𝑛(𝑋̃ ) +𝑋2 + 𝑋̃ − 𝑒−𝑋

2
4 + (0, 0.5)
1 2 3
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Fig. 5. Standardized values of RMSE and Agreement for the different values of 𝛽.
Fig. 6. Regression hypertube of Regression Random Machine algorithm.

• Model 4: p=4, 𝑌 = −𝑋̃1+(2𝑋̃2−1)2+2𝑠𝑖𝑛(2𝜋𝑋̃3)∕(2−𝑠𝑖𝑛(2𝜋𝑋̃3))+
𝑠𝑖𝑛(2𝜋𝑋̃4) + 2𝑐𝑜𝑠(2𝜋𝑋̃4) + 3𝑠𝑖𝑛2(2𝜋𝑋̃4) + 4𝑐𝑜𝑠2(2𝜋𝑋̃4) + (0, 0.5)

• Model 5: p=8, 𝑌 = 1𝑋1>0 + 𝑋3
2 + 1𝑋3+𝑋4−𝑋6−𝑋5>1+𝑋7

+ 𝑒−𝑋
2
8 +

 (0, 0.5)
• Model 6: p=6, 𝑌 = 𝑋2

1 + 𝑋̃2
2 𝑋̃3𝑒−|𝑋4| + 𝑋̃6 − 𝑋̃5 + (0, 0.5)

• Model 7: p=4, 𝑌 = 𝑋̃1 + 3𝑋̃2
2 − 2𝑒−𝑋3 + 𝑋̃4

• Model 8: p=6, 𝑌 = 𝑋1 + 0.707𝑋2
2 + 21𝑋3>0 + 0.873 log(𝑋1)|𝑋3| +

0.894𝑋2𝑋4 + 21𝑋5>0 + 0.464𝑒𝑋6 + (0, 1)

An illustration about how the regression hyperplane created by the
RRM can be seen in Fig. 6 which the Model 1 of data generation is
used as example.

The repeated holdout with 30 repetitions was used as a validation
technique with a split ratio of a training-test of 70%− 30%. The default
parameters of models were 𝛾 = 1, 𝐵 = 100, 𝐶 = 1, 𝛽 = 2, 𝑑 = 2
and 𝜖 = 0.1. The value 𝛽 = 2 proved to be a stable choice over
the experiments in Section 3. The other parameters are considered
default as SVR standard methodology. Table 3 summarizes the result,
and from it is possible to realize that the Regression Random Machine
outperformed the other methods in the majority of simulations setups
8

that were presented and compared with support vector regression
with polynomial kernel function (SVR.Pol), support vector regression
with Gaussian kernel (SVR.Gau), support vector regression with Lapla-
cian kernel (SVR.Lap), bagging SVR.Pol (BSVR.Pol), bagging SVR.Gau
(BSVR.Gau) and bagging SVR.Lap (BSVR.Lap). The bold RMSE mean
values indicate the lowest among all considered methods. In many of
the considered model scenarios we can notice that bagging procedure
does not improve its single SVR. The support vector regression with
Laplacian kernel had a satisfactory predictive performance in single
and bagging versions. The single polynomial kernel had the worst
general predictive performance. Regression random machines had the
best general predictive performance, minimum value or close to the
minimum to all the scenarios.

4.2. Study of tuning process

The regression random machines presents robustness concerning the
hyperparameter selection for the SVR base models avoiding the compu-
tational cost of performing a grid search to select the best model setting,
without harm the predictive performance. To evaluate this feature,
all the simulated scenarios were replicated varying the sample size in
𝑛 = {30, 100, 300, 500, 1000} with a 30 repeated holdout cross-validation
setting using a split ratio of training-test of 70%–30%. To perform a
complete grid search for the single SVR models shifting among the four
kernel functions: linear, polynomial, Gaussian and Laplacian. For the
other hyperparameters the range of 𝛾 = 𝐶 =

{

2−3, 2−2, 2−1, 20, 21, 22, 23
}

and 𝜖 = {0.001, 0.01, 0.1}. The regression RM was applied without
any tuning, and with the default hyperparameters also described in
Section 4.1 . To measure the predictive performance three metrics were
used: the RMSE, already defined in the article, the Mean Absolute Error
(MAE = 1

𝑛‖𝐲 − 𝐲̂‖) and the Cosine Similarity (COS = 𝐲⋅𝐲̂
‖𝐲‖×‖𝐲̂‖ ). The

𝑅𝑀𝑆𝐸 = 0 and 𝑀𝐴𝐸 = 0 represent a perfect prediction scenario while
the 𝐶𝑂𝑆 = 1 represent the optimal prediction result. The results are
summarized in Tables 4 and 5, where the average values of RMSE, MAE
and COS are shown. The values for each row corresponds to a tuning
over the SVR.LIN, SVR.POL, SVR.RBF, SVR.LAP and a default version
of regression RM.

The results show that, in general, RM presents an equivalent per-
formance when compared with the SVR with the best kernel and best
hyperparameters selected by the tuning process. In general, the RM can
outperform SVR or present the worst result when compared with the
best SVR, however, in general, the proposed ensemble model can yield
reliable predictions with a smaller time processing.

Fig. 9 highlights the time difference between the computational cost
of realizing a tuning in the SVR models and applying the RM. The
average time in minutes of the tuning process can be almost ten times
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Table 3
Summary of the simulation’s results for the different databases. Each value corresponds to the mean RMSE method on the test data .
In bold the lower value of the generalization error.
Model n SVR.Lin SVR.Pol SVR.Gau SVR.Lap BSVR.Lin BSVR.Pol BSVR.Gau BSVR.Lap RRM

1

30 0.4443 0.3328 0.2189 0.2604 0.4305 0.2942 0.2454 0.2882 0.2134
100 0.4507 0.1403 0.1482 0.1631 0.4452 0.1370 0.1522 0.1770 0.1226
1000 0.3877 0.1110 0.1091 0.1132 0.3876 0.1108 0.1088 0.1120 0.1069

2

30 1.2274 1.4203 0.9653 0.9435 1.2221 0.9146 0.9643 0.9511 0.9191
100 1.0425 0.7983 0.9333 0.9016 1.0293 0.7401 0.9379 0.9122 0.7390
1000 0.8900 0.4998 0.7996 0.6643 0.8888 0.4983 0.8176 0.6937 0.4980

3

30 0.9202 2.1038 1.0702 1.0368 0.9181 1.5041 1.1493 1.1121 0.8761
100 0.6176 1.4123 0.8254 0.7077 0.6116 1.3375 0.8906 0.7738 0.5959
1000 0.6086 1.2475 0.5675 0.5373 0.6082 1.2220 0.5612 0.5338 0.5334

4

30 2.2237 4.4928 2.7105 2.6977 2.3196 3.8646 2.8099 2.7963 2.1556
100 2.2462 2.9495 2.3342 2.1906 2.2313 2.8389 2.3770 2.2504 2.1394
1000 2.1302 3.0750 1.0068 1.1613 2.1295 3.0458 1.0734 1.2927 1.0970

5

30 0.9664 1.8465 1.1168 1.0756 0.8867 1.3307 1.1088 1.0846 0.9025
100 0.7740 1.9348 1.0089 0.9074 0.7700 1.4642 1.0115 0.9355 0.7757
1000 0.7003 0.9621 0.8835 0.6925 0.6998 0.9561 0.8978 0.7115 0.6876

6

30 0.6806 2.7753 0.9458 0.8629 0.7353 1.4283 0.9517 0.8968 0.7554
100 0.6380 1.2054 0.9416 0.7962 0.6395 1.1986 0.9687 0.8440 0.6353
1000 0.5792 1.0204 0.6521 0.5491 0.5792 1.0015 0.6709 0.5570 0.5453

7

30 0.6806 2.7753 0.9458 0.8629 0.7353 1.4283 0.9517 0.8968 0.7554
100 0.6380 1.2054 0.9416 0.7962 0.6395 1.1986 0.9687 0.8440 0.6353
1000 0.5792 1.0204 0.6521 0.5491 0.5792 1.0015 0.6709 0.5570 0.5453

8

30 2.2623 4.2416 2.2105 2.0928 2.0908 2.4499 2.2323 2.1550 2.0283
100 1.8324 2.5624 2.0880 1.9245 1.8286 2.3039 2.1121 1.9658 1.7994
1000 1.9270 2.1882 1.8161 1.4392 1.9252 2.1468 1.8884 1.5254 1.5107

Total −− 25.4471 42.3213 25.8916 23.9261 25.3307 34.4164 26.5210 24.8669 21.5729
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greater than the default RM for a sample of 30 observations. As the
sample size increases, this ratio between the SVR. Tuning time and RM
increase as well, showing that the RM can avoid tuning processes that
would be computationally infeasible for large datasets.

To analyze the marginal effects of the tuning process, two other
experiments were performed. The first one is show in Fig. 7, where for
each simulated scenario the 𝜀 was kept fixed while all combinations of
𝐶 =

{

2−2, 2−1, 1, 2
}

and 𝛾 =
{

2−2, 2−1, 1, 2
}

using a Gaussian Kernel
for the single SVR model. The RM model was run with the default
parameters, and with 𝐵 = {25, 100}. The results enhance the previous
interpretation about the effectiveness of RM to yield good predictions
without any tuning processes. With exception of Scenario 4, all other
hyperparameters combination of the SVR.RBF presented greater values
of RMSE than the default versions of RM.

The second one is show in Fig. 8, where, using a RBF kernel func-
tion, the same setting for 𝐶 =

{

2−2, 2−1, 1, 2
}

and 𝛾 =
{

2−2, 2−1, 1, 2
}

was
sed, in addition with the variation over 𝜀 = {0.1, 0.01, 0.001}. Besides
he RBF kernel, the polynomial with degree 𝑑 = {1, 2, 3} was also used
s an example of hyperparameter tuning. In this experiment, instead
f applying all possible combinations, each parameter was changed
hile the others were kept constant on their default values. The result
as evaluated over the simulated Model 2, 4 and 8 respectively. The

ettings for RM remain the same as the previous experiment. Fig. 8
hows, that except the variation of the cost parameter 𝐶 in Model 4,
M presented the lowest RMSE value indicating that their simplest
etting surpass a single tuning of SVR hyperparameters with a lower
omputational cost (see Table 6).

.3. Real data application

The methodology was applied on 26 real-world datasets from the
CI Repository (Dua & Graff, 2017) to evaluate its performance. The
atasets present a wide variety in the number of observations, dimen-
ionality, and type of data, all concerning regression tasks. The UCI
enchmarkings are extensively used in the machine learning literature
9

s a resource of comparison for many algorithms for real-world appli-
ations due to their variety and reliability (Amarnath, Balamurugan, &
lias, 2016; Khan, Arif, Siddique, & Oishe, 2018) — having more than
,900 citations at Google Scholar. Besides the UCI datasets, some of
hem were gathered from the package MASS (Ripley et al., 2013), and
heir description can be found in the documentation of the package.
able 7 summarizes all datasets considered. The continuous features
ere scaled to zero mean and unit variance, except for the discrete fea-

ures which went through a one-hot-encoding process. The validation
echnique used was the repeated holdout with 30 repetitions and a split
atio of training-test of 70% − 30%.

The regression random machines were compared with the bagged
VR approach using each one of single kernel functions shown in
able 1, and with the standard SVR procedure with the same kernel
unctions. The chosen parameters were: the parameter 𝜖 = 1, the cost
arameter 𝐶 = 1, the number of bootstrap samples 𝐵 = 100, the degree
f polynomial kernel 𝑑 = 2, and the hyperparameter 𝛾 from the Table 1,
= 1. The result is resumed in Fig. 10 considering the Root Mean

quared Error (RMSE).
As demonstrated in Fig. 10, the RRM shows lower generaliza-

ion error than the other bagged support vectors using unique kernel
unctions. Comparing the RRM with the traditional bagged SVR, it out-
erforms almost 90.9% of times the Kernel Linear Bagging, 96.9% for
he Kernel Polynomial Bagging, 97.2% for the Gaussian Bagging, and
4.7% for the Laplacian Kernel Bagging. These results show off that the
andom weighted choice of the functions of the kernel reduced, mostly,
he error from the predicted values. The difference is also present
hen the regression random machines are compared with the singular
VR, where the RM is more accurate 91.2% of times considering the
ernel Linear, 96.4% for the Kernel Polynomial, 94.6% for the Gaussian
agging, and 84.5% for the Laplacian Kernel. Fig. 11 shows boxplots
or the mean values for the Error Score, presented in Section 3.1,
verall the 30 holdout repetitions for all 26 benchmarking data sets.
nalyzing the results it is clear to see that the RRM has, generally,
ood performance when compared with the traditional methods. This
pproach also deals with the problem of the choice of the best kernel
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Fig. 7. Performance capacity for the tuning processes of hyperparameters 𝐶 and 𝑔𝑎𝑚𝑚𝑎 for SVR with Gaussian kernel over all scenarios from Model 1 to Model 8. The validation
considers 𝑛 = 1000 and a repeated holdout 70-30 with thirty repetitions.
function, since it is not necessary to perform a grid-search among all
the different functions and define which one has a lower test error. For
this reason, the RRM algorithm can be considered efficient, as it can
reduce the prediction error and the computational cost.

As hyperparameter tuning is an important procedure in the support
vector machine regression algorithm (Duan, Keerthi, & Poo, 2003), the
10
value of 𝛾 was changed in order to study how its variation affects the
behavior of RRM. The setting of the parameters was the set of values
𝛾 = {2−3, 2−2, 2−1, 20, 21, 22, 23} over the same data sets. The result is
shown in Fig. 12, where it is possible to see that the RRM surpassed the
other bagging and single models. As said before the selection of these
parameters, as the kernel function, has a direct impact on the model
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Fig. 8. Marginal effects of tuning a SVR.RBF model varying the 𝐶, 𝛾 and 𝜀, and SVR.Pol varying the degree 𝑑 compared with the default values of RM over the simulated Models
2, 4 and 8 respectively.
performance, and the results fortify the supposition that RRM gives a
good and consistent result for a wide range 𝛾 values.

4.4. Bolsa familia programme application

Several governments around the world seek to combat inequality
and poverty through social programs. This is the case of the Brazilian
Bolsa Familia Programme, which was created in 2003 with the objec-
tive of promoting poverty reduction in Brazil. The dataset contains
11
Brazilian municipalities ten covariates and the rate of people using
Bolsa Familia as response variable. This rate, which is the variable
of interest in the study, is defined by the number of people who
receive the aid divided by the total population of the municipality. The
importance of predicting with a high level of accuracy the rate of use
of the program can help the government to better manage resources,
in addition to understanding which regions of Brazil are suffering more
with social inequality. The source of this dataset may be found in Paz
et al. (2020) and Maia, Azevedo, and Ara (2021) and can be accessed
in rmachines package in R Language.
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Fig. 9. Mean time for the SVR tuning and regression RM for all eight scenarios and sample size 𝑛 = {30, 100, 300, 1000}.
Fig. 10. The proportion of the number of times which a method obtained lower RMSE than the others. The proportion summarizes the applications overall 26 datasets and 30
holdout values.
The applied machine learning methods are composed by regression
random machines, extreme gradient boosting (Friedman, 2001), light
gradient boosting machine (Ke et al., 2017), both with 100 training
rounds, support vector regression models using linear (𝐶 = 1 and
𝜆 = 1), polynomial (𝐶 = 1 and 𝑑 = 2) and Gaussian kernels (𝐶 = 1 and
auto-tuning for 𝜆) as well as dense multi-layer perceptions in a deep
learning context (Hinton et al., 2012). The deep learning multi-layer
perceptron (DP-MLP) was considered for two different architectures
12
with the following hidden layers: (1) 128-64-32 and (2) 256-128-64.
The activation function was the scaled exponential linear unit (SeLU)
and adam optimizer using default learning rate 0.001 (Klambauer,
Unterthiner, Mayr, & Hochreiter, 2017).

The predictive performance of the models was measured using the
root mean squared error (RMSE), mean absolute error (MAE) and
cosine similarity (COS) metrics. These measures were calculated in a
repeated holdout validation technique with 30 repetition by 75%–25%
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Fig. 11. Boxplot of the mean values for each technique used.
Fig. 12. Summary of the mean values for the Error Score applied over 26 real datasets with the different kernel functions and gamma’s values.
for training and test data, respectively. Table 8 displays the results of
predictive performance metrics. Fig. 13 displays The proportion of the
number of times which a method obtained lower or equal RMSE than
its competitors in a repeated holdout. Regression random machines
is superior in at least 97% of the replications compared to any other
considered method.
13
From these results, the regression random machines has a superior
predictive performance to the extreme gradient boosting, SVM with
linear kernel and deep learning neural networks models. On the other
hand, the RRM showed a slightly superior general predictive perfor-
mance, so the RRM can be a robust and competitive ensemble model
comparable to light gradient boosting machine (LGBM).
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Table 4
Table with the calculated values of RRMSE , MAE and COS over the test samples of
the 30 repeated holdout from Simulated Scenarios 1–4.

n Method Model 1 Model 2

RMSE MAE COS Time RMSE MAE COS Time

30 RRM 0.22 0.19 0.99 0.75 0.92 0.76 0.45 0.68
SVR.Lap 0.20 0.16 0.99 2.95 0.94 0.80 0.38 3.90
SVR.Lin 0.42 0.34 0.95 0.39 1.00 0.84 0.22 0.47
SVR.Pol 0.12 0.09 1.00 0.34 0.92 0.75 0.46 0.43
SVR.Gau 0.15 0.12 0.99 3.06 0.92 0.81 0.38 3.30

100 RRM 0.15 0.12 0.99 0.56 0.83 0.66 0.49 3.11
SVR.Lap 0.15 0.12 0.99 3.11 0.91 0.72 0.23 6.05
SVR.Lin 0.43 0.37 0.94 0.39 1.02 0.81 0.01 0.89
SVR.Pol 0.11 0.09 1.00 0.48 0.87 0.68 0.35 3.62
SVR.Gau 0.12 0.10 1.00 2.78 0.91 0.72 0.28 6.46

300 RRM 0.11 0.09 1.00 1.81 0.59 0.47 0.75 7.04
SVR.Lap 0.12 0.10 1.00 8.89 0.65 0.52 0.70 6.84
SVR.Lin 0.42 0.34 0.94 1.19 0.92 0.75 −0.05 0.72
SVR.Pol 0.11 0.09 1.00 1.12 0.60 0.48 0.75 13.90
SVR.Gau 0.11 0.09 1.00 7.40 0.65 0.52 0.69 4.96

1000 RRM 0.11 0.09 1.00 5.86 0.54 0.43 0.82 6.00
SVR.Lap 0.11 0.09 1.00 31.40 0.59 0.47 0.78 13.30
SVR.Lin 0.39 0.32 0.94 1.81 0.94 0.75 0.03 1.03
SVR.Pol 0.11 0.09 1.00 2.70 0.54 0.44 0.82 11.90
SVR.Gau 0.11 0.09 1.00 17.40 0.61 0.49 0.77 7.62

n Method Model 3 Model 4

RMSE MAE COS Time RMSE MAE COS Time

30 RRM 0.85 0.69 0.88 0.54 2.57 2.20 0.93 0.58
SVR.Lap 0.80 0.63 0.89 2.83 2.34 2.07 0.95 2.80
SVR.Lin 0.79 0.63 0.90 0.43 2.22 1.79 0.94 0.56
SVR.Pol 1.02 0.77 0.82 0.62 2.64 2.14 0.93 0.45
SVR.Gau 0.85 0.67 0.88 2.81 2.53 2.20 0.93 2.71

100 RRM 0.61 0.48 0.93 1.12 2.09 1.72 0.95 1.18
SVR.Lap 0.60 0.49 0.93 5.65 1.95 1.60 0.96 5.52
SVR.Lin 0.62 0.48 0.92 0.72 2.21 1.84 0.94 1.00
SVR.Pol 0.61 0.49 0.93 1.24 2.03 1.60 0.95 0.78
SVR.Gau 0.58 0.46 0.93 6.15 2.06 1.69 0.95 5.55

300 RRM 0.58 0.47 0.93 1.19 1.82 1.50 0.97 1.22
SVR.Lap 0.57 0.46 0.93 6.03 1.57 1.27 0.98 5.98
SVR.Lin 0.65 0.52 0.91 0.59 2.08 1.71 0.96 0.61
SVR.Pol 0.56 0.44 0.94 1.95 1.81 1.46 0.97 1.73
SVR.Gau 0.57 0.46 0.93 4.42 1.59 1.26 0.98 4.92

1000 RRM 0.55 0.44 0.93 6.47 1.44 1.16 0.98 5.35
SVR.Lap 0.55 0.44 0.93 29.80 1.02 0.80 0.99 28.50
SVR.Lin 0.61 0.50 0.91 2.16 2.15 1.78 0.95 1.84
SVR.Pol 0.55 0.44 0.93 7.42 1.77 1.50 0.97 6.61
SVR.Gau 0.54 0.43 0.93 19.10 0.95 0.74 0.99 18.30

In order to compare the predictive performance of the proposed
ethod with other machine learning methods, exhaustive studies are
ecessary and are beyond the scope of this article. In this manner, Maia
t al. (2021) show an exhaustive comparison between random ma-
hines and the random forest method.

. Final comments

Random machines provide a new form to handle ensemble methods
nd support vector machines. The competitive predictive performance
f the proposed method is proved theoretically and by several different
xperiments with artificial and real datasets. In general, regression ran-
om machines eliminate the problem of choosing a single appropriated
ernel function and tuning its parameters in support vector regressions
nd is very competitive to other state-of-art machine learning methods.

Thus, the regression random machines combine different SVR mod-
ls using different kernel functions and avoid the expensive com-
utational cost of doing a grid or random search among the SVR
odels, besides reducing the general prediction error. To quantify

his reduction, suppose many 𝐵 models are calculated in a traditional
agging procedure and 𝑅 as the number of kernels functions that will
14
Table 5
Table with the calculated values of RMSE , MAE and COS over the test samples of the
30 repeated holdout from Simulated Scenarios 5–8.

n Method Model 5 Model 6

RMSE MAE COS Time RMSE MAE COS Time

30 RRM 0.89 0.73 0.91 0.76 0.96 0.77 0.52 0.75
SVR.Lap 0.80 0.69 0.93 3.36 0.69 0.55 0.74 3.01
SVR.Lin 0.81 0.70 0.93 0.60 0.76 0.62 0.70 0.41
SVR.Pol 0.80 0.66 0.92 0.52 0.82 0.65 0.63 0.40
SVR.Gau 0.82 0.72 0.92 3.24 0.67 0.54 0.74 3.04

100 RRM 0.74 0.60 0.92 1.38 0.73 0.59 0.76 1.35
SVR.Lap 0.71 0.58 0.92 5.97 0.71 0.58 0.77 5.81
SVR.Lin 0.72 0.58 0.92 1.02 0.75 0.60 0.75 0.85
SVR.Pol 0.85 0.70 0.89 3.35 0.72 0.59 0.76 2.15
SVR.Gau 0.76 0.62 0.91 7.22 0.74 0.62 0.74 5.91

300 RRM 0.73 0.59 0.91 1.62 0.61 0.49 0.82 1.27
SVR.Lap 0.71 0.57 0.91 6.76 0.59 0.48 0.83 6.15
SVR.Lin 0.72 0.58 0.91 0.94 0.65 0.51 0.79 0.67
SVR.Pol 0.79 0.62 0.89 38.40 0.59 0.48 0.83 5.65
SVR.Gau 0.74 0.60 0.90 5.10 0.62 0.50 0.81 4.82

1000 RRM 0.68 0.55 0.92 2.66 0.56 0.45 0.85 3.61
SVR.Lap 0.67 0.54 0.92 12.70 0.56 0.44 0.85 18.80
SVR.Lin 0.71 0.57 0.91 1.10 0.61 0.48 0.82 1.51
SVR.Pol 0.69 0.55 0.92 16.60 0.54 0.43 0.86 11.40
SVR.Gau 0.69 0.55 0.92 7.64 0.56 0.45 0.85 11.70

n Method Model 7 Model 8

RMSE MAE COS Time RMSE MAE COS Time

30 RRM 1.36 1.08 0.85 0.66 2.33 1.84 0.89 0.61
SVR.Lap 1.17 0.96 0.88 2.80 1.76 1.44 0.94 3.04
SVR.Lin 1.37 1.11 0.84 0.40 1.99 1.67 0.93 0.59
SVR.Pol 0.93 0.76 0.93 0.41 2.01 1.59 0.91 0.45
SVR.Gau 1.16 0.92 0.89 2.85 1.65 1.29 0.95 2.79

100 RRM 0.80 0.65 0.95 1.27 1.82 1.23 0.94 1.11
SVR.Lap 0.75 0.61 0.96 5.98 1.73 1.20 0.94 5.69
SVR.Lin 1.13 0.96 0.90 0.99 1.90 1.33 0.93 0.88
SVR.Pol 0.58 0.47 0.98 1.93 1.88 1.31 0.93 2.08
SVR.Gau 0.65 0.51 0.97 5.68 1.77 1.21 0.94 5.56

300 RRM 0.67 0.54 0.96 1.62 1.57 1.11 0.94 1.22
SVR.Lap 0.62 0.50 0.96 5.81 1.43 1.03 0.95 6.05
SVR.Lin 1.11 0.93 0.88 0.59 2.04 1.42 0.90 0.74
SVR.Pol 0.55 0.44 0.97 2.06 1.53 1.15 0.94 5.20
SVR.Gau 0.60 0.48 0.97 4.52 1.39 0.99 0.95 4.72

1000 RRM 0.58 0.46 0.97 4.36 1.18 0.84 0.98 2.96
SVR.Lap 0.58 0.46 0.97 21.10 1.04 0.74 0.98 15.50
SVR.Lin 1.07 0.88 0.88 1.55 1.87 1.41 0.94 1.22
SVR.Pol 0.53 0.42 0.97 6.05 1.36 0.99 0.97 10.20
SVR.Gau 0.56 0.44 0.97 13.40 1.06 0.78 0.98 9.67

Table 6
Comparison of computational time for considered models with different sample sizes.
n Method Time (in seconds)

Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 Mod7 Mod8
30 RM 0.75 0.68 0.54 0.58 0.76 0.75 0.66 0.61

SVR.Tuning 6.74 8.10 6.69 6.51 7.72 6.86 6.46 6.87
100 RM 0.56 3.11 1.12 1.18 1.38 1.35 1.27 1.11

SVR.Tuning 6.76 17.02 13.76 12.85 17.56 14.72 14.58 14.21
300 RM 1.81 7.04 1.19 1.22 1.62 1.27 1.62 1.22

SVR.Tuning 18.60 26.42 12.99 13.24 51.20 17.29 12.98 16.71
1000 RM 5.86 6.00 6.47 5.35 2.66 3.61 4.36 2.96

SVR.Tuning 53.31 33.85 58.48 55.25 38.04 43.41 42.10 36.59

be evaluated and used in support vector models. In traditional bagging
algorithms using SVR as base-models the number of total models that
will be calculated to obtain the best results is given by 𝐵 × 𝐾 while
sing the regression random machines approach this number reduces
o 𝐵 + 𝐾. Using an example of 𝐵 = 100 and 𝐾 = 400, we have that
he traditional bagging algorithm would take approximately four times
he computational cost than the proposed Random Machines since the
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Table 7
Description of the twenty six regression datasets.
ID Data Set # Instances # Features # Cont. : # Categ. ID Data Set # Instances # Features # Cont. : # Categ.

1 abalone 4177 7 6:1 14 machines 208 7 6:1
2 airbnb 10498 17 17:0 15 mpg 398 6 3:3
3 airfoil 1502 5 6:0 16 ozone 330 8 8:0
4 boston housing 505 13 12:1 17 parkinson 1040 26 25:1
5 cars 50 1 1:0 18 petrol 31 4 4:0
6 cement 12 4 4:0 19 pyrim 74 27 27:0
7 concrete 1030 8 8:0 20 servo 167 4 2:2
8 cpus 208 6 6:0 21 slump 102 7 7:0
9 friedman#1 500 10 10:0 22 space ga 3107 6 6:0
10 friedman#2 500 4 4:0 23 stormer 22 2 2:0
11 friedman#3 500 4 4:0 24 taiwan 414 6 6:0
12 geysers 298 1 1:0 25 triazine 185 60 60:0
13 hills 34 2 2:0 26 yatch 308 6 6:0
Table 8
Predictive performance metrics of the considered methods to the regression task in the
Bolsa familia dataset.

Metric RRM DP-MLP1 DP-MLP2 LGBM XGBM SVM𝐿𝐼𝑁 SVM𝑃𝑂𝐿 SVM𝐺𝐴𝑈

RMSE 0.280 0.292 0.291 0.287 0.302 0.300 0.288 0.288
MAE 0.209 0.219 0.220 0.214 0.226 0.224 0.214 0.214
COS 0.960 0.957 0.957 0.958 0.954 0.954 0.958 0.958

Fig. 13. The proportion of the number of times which a method obtained lower RMSE
than its competitors in a repeated holdout.

ratio of calculated models is 400/104 (i.e: four times faster). The
reduction of the computational time using RRM compared to tuning
processes of the SVR is very expressive specially when training sample
size increases. Furthermore, the results from RRM explored the strength
and correlation characteristics in the bagging procedure, obtaining
simultaneously lower generalization error and agreement, instead of
traditional ensemble procedures using SVR as base models that cannot
achieve them at the same time.

Additionally, this methodology can be explored in other contexts
and can be applied to any practical statistical learning regression
problem. Future theoretical studies may be done concerning the use
of other and more kernel functions in the bagging step, besides other
weighting function approaches as well as extensions for large datasets.
15
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